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Abstract

Most existing vision and language (V&L) models
focus primarily on 2D images, which limits their un-
derstanding of spatial information. To address this
gap, we introduce a novel 3DVQA pipeline that di-
rectly uses 3D point clouds along with question text
as input to enrich the model’s spatial awareness, and
outputs the answer text. In addition, GPT3.5 is
prompted to generate question-answer pairs based
on the Matterport3D [2] dataset. As a result, our
model shows great ability in answering different types
of questions.

Keywords— 3D Point Cloud, Visual Question Answer-
ing, Dataset Generation

1 Introduction

3D Visual Question Answering (VQA) integrates
3D scene understanding and natural language pro-
cessing to enable systems to answer questions about
3D spatial data, such as point clouds. This technol-
ogy has the potential to enhance virtual and aug-
mented reality experiences and optimize robotic in-
teractions within 3D environments. However, the ad-
vancement of 3D visual question answering faces ob-
stacles, such as the absence of extensively annotated
datasets that combine 3D visuals with relevant ques-
tions, as well as the complexity of deriving meaning-
ful 3D features for accurate answer generation.

Nevertheless, promising new developments are
emerging to address these challenges. Large language
models (LLMs) can facilitate the creation of compre-

hensive 3D VQA datasets. Furthermore, Peng et al.
[5] have developed a model that distils complex 3D
point cloud features with 2D multiview CLIP fea-
tures, allowing for the direct use of point clouds.
Building on these advances, we have developed a
3D VQA pipeline that encodes the 3D scene point
cloud using a pre-trained OpenScene [5] distill en-
coder. We then align the features using semantic
pooling techniques, fuse with the text features, and
predicts meaning answer. Our approach has pro-
duced good qualitative and quantitative results on
the Matterport3D dataset [2], and we have compared
our features with those from various sources. Addi-
tionally, we created a 3DVQA dataset based on the
Matterport3D dataset[2], which has 10,800 aligned
3D panoramic views. We used GPT API to gen-
erate these answers using the object labels and the
extracted coordinates from the 3D point cloud. Our
dataset has 37,470 question-answer pairs from 1196
distinct scenes.

2 Related work

2.1 2D Visual Question Answering

The task of Visual Question Answering(VQA) is
to provide the answer given an image and a related
question.

Despite the strong zero-shot capability of CLIP on
vision tasks, CLIP does not exhibit the same level
of performance on certain visual and language down-
stream tasks. In CLIP-ViL [7], they propose to inte-
grate CLIP’s visual encoder with previous V&L mod-



els by replacing their visual encoder with CLIP’s vi-
sual encoder.

MCAN [9] takes Fatser-RCNN as visual encoder,
LSTM as question encoder and an encoder-decoder
based modular co-attention network for fusing multi-
ple representations. And employ an output classifier
on top of the fused representation to predict the final
answer. In CLIP-ViL, they replace the Fatser-RCNN
with CLIP visual encoder. In the VQA task, the
combination of the MCAN model with CLIP-Res50x4
yields the best-performing results.

2.2 3D visual feature processing

Our method draws on OpenScene [5], a simple yet
effective zero-shot approach for open-vocabulary 3D
scene understanding. This approach, as shown in
Fig. 1, trains a 3D distilled encoder, which brings 3D
points in alignment with pixels in the feature space,
in turn are aligned with text features. It achieves
state-of-the-art for zero-shot 3D semantic segmen-
tation on standard benchmarks, outperforms super-
vised approaches in 3D semantic segmentation with
many class labels.

2.3 Question& Answer prompting and
generation

To better activate CLIP’s textual encoder to align
with inputs, PointCLIP V2[10] aims to utilize 3D-
specific description with category-wise shape charac-
teristics as the textual input of CLIP. Considering the
powerful descriptive capacity of LLMs, they leverage
GPT-3.5 to generate 3D specific text with sufficient
3D semantics for CLIP’s textual encoder.

Besides, many previous works have used GPT to
expand the capacity of their current VQA dataset
and made their prompts capable of reasoning to gen-
erate responses in autonomous driving settings [4].
We do not have access to enough data to make VQA
about the 3D scene like in the 2D VQA case. The
ScanQA[g8] dataset, built on the ScanNet dataset, has
10,062 fully human-annotated question-answer pairs
about 3D scenes. ScanQA-3D QA [1] dataset has
human edited 41,363 questions and 58,191 answers.
GPT enables us to create the desired type and huge
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Figure 1: Openscene model.

amount of data much faster and cheaper than human
annotators. 3DLLM [3] also used GPT API to gen-
erate questions using 3D scene information, but for
the question-answering part, they used 2D images.
In this study, we used GPT API to create answers
about given question templates and 3D scene infor-
mation that only includes 3D point cloud information
and labels.

3 Method

An overview of our approach is illustrated in Fig.
2. We first extract the 3d features encoded by 3D
distillation encoder.
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Figure 2: Method overview.

At the same time, question features are extracted
through GloVe and LSTM. After pooling processing



of visual features, multi-modal features could be in-
put to MCAN co-attention modules and then aggre-
gated to yield the final answer. In order to train the
network, we prompt ChatGPT with predefined ques-
tion template and some scene descriptive message to
get the ground truth answer.

3.1 3D Visual distillation

Since the open-vocabulary image embeddings are
co-embedded with CLIP features in OpenScene[5],
the output of distilled 3D model naturally lives in
the same embedding space as CLIP. Therefore, we
can distill such 2D visual-language knowledge into a
3D point network that only takes 3D point positions
as input

We use the 3D encoder as shown in Fig.2 of pre-
trained OpenScene model to extract per-point fea-
tures for Matterport 3D dataset, such that even with-
out any 2D observations, the text-3D co-embeddings
allow 3D scene level understanding given arbitrary
text prompts.

Since Openscene model has a good perfoemance
in 3D semantic segmentation task, we use the pre-
dicted semantic label for pooling. Also, we extract
multiview features and 2D-3D ensemble features for
further ablation analysis.

3.2 Pooling technique

Due to the feature size mismatch, we need some
pooling technique ¢ : F3p +— Fycan to convert the
3D distilled feature: Fsp : RP*/ to feature required
for MCAN multi-modal fusion: Fuyoan : REOTS
where p is the number of points in a scene, f is the
feature dimension embedded by 3D distilled encoder,
ROI is the Region Of Interest.

The pooling techniques can be divided into two
types, one is based on Farthest Point Sampling(FPS)
and k-Nearest-Neighborhood(kNN) [6], another one
is based on semantic label. Since FPS pooling could
not give an insight to the underlying structure of the
scene, we turn to semantic pooling. Although se-
mantic label from ground truth can show us an up-
per bound performance, it is not applicable in real
life. For better availability, we pool the 3d feature

making use of Openscene prediction of 3D semantic
segmantation task.

3.3 Multi-modal fusion

We use Global Vectors for Word Representa-
tion(GloVe) to obtain question embedding, then em-
ploy LSTM network for processing sequences of em-
bedding.

Then, MCAN model[9] , which is stacked by self at-
tention and self-guided-attention modules, are used
for joint 3D distilled features and question features
processing. An attention flattening layer is used
within the MCAN model to flatten the sequence rep-
resentations obtained from both visual and language
features. After layer normalization for concatenation
of V&L, a linear projection layer produces the final
outputs representing the probability distribution over
possible answers.

3.4 Visual question answering

During training, we use BCE loss to supervise the
network. During evaluation, we calculate per-answer
type accuracy respectively and also the overall accu-
racy.

Since GPT could only give one correct answer for
each question, we perform accurate matching be-
tween output and ground truth answer, i.e. the
matching result is either true or false.

3.5 Question& Answer generation
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Figure 3: Process of the answer generation.



Feature Pooling Method Overall Count Spatial Yes/No Action
3D Distillation FPS 55.3 57.88 44.21 91.36 33.5
3D Distillation label ~GT Semantic Label 58.82 57.72 48.02 92.3 41.99
3D Distillation Predicted Semantic Label  58.73 56.9 48.02 93.58 41.3
Table 1: Comparison of Pooling Methods on Q&A Pair Accuracy.
Feature Pooling Method Overall Count Spatial Yes/No Action
3D Distillation GT Semantic Label 58.82 57.72 48.02 92.3 41.99
3D Distillation Predicted Semantic Label  58.73 56.9 48.02 93.58 41.3
2D Multiview GT Semantic Label 59.08 58.24 50.79 94.14 40.32
2D Multiview Predicted Semantic Label  58.45 58.2 50.53 94.35 38.96
2D Singleview GT Semantic Label 57.03 57.72 46.51 91.96 37.26
2D Singleview Predicted Semantic Label  55.85 52.38 44.76 92.3 38.86
2D-3D Ensemble  GT Semantic Label 61.7 58.7 52.54 94.78 45.33
2D-3D Ensemble  Predicted Semantic Label 61.14 59.2 52.14 93.76 44.15

Table 2: Performance Evaluation of Feature Types Across Question Categories.

We can divide the question-answer generation into
three parts to prompt GPT API, as shown in Fig. 3.

(1) Creation of the system message: the sys-
tem message includes a task description, instructions
about the task expected from GPT API, and some
example cases A.1. (2) Creation of scene infor-
mation: scene information includes scene ID, [X, Y,
Z] center coordinates of clustered objects from ev-
ery object category, bounding box information, and
their object labels (A.1 Fig. 5). Since Matterport
41 labels provide us with extensive object options,
we created our dataset based on Matterport4l from
the Matterport 3D dataset [2]. We used DBScan and
plane segmentation from Open3D for clustering the
objects. (3) Creation of the question templates:
it includes manually created questions templates for
the different cases. We created four different ques-
tion categories; yes/no, spatial, count, and action.
We tried to use GPT API to generate the questions
similar to related work [3]. It had created nice ques-
tions but could not follow the instructions properly
and mixed the questions and question types up. Also,
it had more hallucinations than the answers of the
manually created questions.

4 Results

We constructed a dataset comprising 32,039 Q&A
pairs across 1,025 diverse scenes for the training set,
and 5,431 Q&A pairs from 171 unique scenes for the
validation set. Detailed dataset composition are elab-
orated in the appendix A.2.

For evaluation purposes, we assess the accuracy
of predictions against ground truth (GT) values. A
match is scored as ’1’ (correct), while a mismatch is
scored as 0’ (incorrect). Our evaluation metrics in-
clude overall accuracy and category-specific accuracy
for question types such as count, spatial, yes/no, and
action-related queries. These categories present vary-
ing levels of difficulty due to the differing degrees of
scene understanding required.

As demonstrated in Table 1, various pooling meth-
ods were compared, highlighting that semantic pool-
ing outperforms other techniques. Furthermore, Ta-
ble 2 explores the performance of features derived
from different sources, such as multi-view, single-
view, and ensemble features, indicating that ensem-
ble features yield the best results, with single-view
features performing the least effectively.

5 Conclusion

In summary, our contributions can be summarized
as follows: 1. present a new pipeline that directly



utilizes 3D point cloud to realize visual question an-
swer, 2. generate annotated question and answer
pairs using GPT3.5. However, since we use seman-
tic pooling to process the visual features, it can’t
achieve instance-level understanding. Further re-
search should be conducted to solve this problem.
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A Appendix

A.1 Scene descriptive message details

System message:

I will give you object labels and their detailed coordinates in pairs for each specific object within
the indocor 3D scenes. These coordinates are in the form of points, represented as [¥X , ¥, Z] with
floating numbers.

These values correspond to the center points of point cloud cobjects. Besides, you will receive
questions about these 3D scene representation, and the reference answers of these questions.

For instance, 'How many 'labels' are there?' is asked and the sentence you need to create is only
'number of the asked labels’

Wwhere is the "label' located with respect to the 'another label'? is asked and the sentence you need
to create is only 'above, under or behind etc.' the 'another label'. Is there any 'label' in the
room? 1s asked and the sentence you need to create is only 'Yes' or "no'.

What is hanging on the wall? is asked and the sentence you need to create is only 'label'.

Give cne-word answer.

If yes—no guestion is asked, provide only yes or no answer.

If count guestion is asked, provide only the number of the objects.

Assume that you are at [0,0,0] and positive X direction is your right side, negatiwve Y is your front.
For spatial guestions use the center point coordinates to infer relationship whether the object above,

under or behind etc. If no objects are hanging on the wall, the answer should be 'nothing'.

Figure 4: The system message that we used to send GPT API.

Scene information:

Scene_id,LabelXc,Yc,Zc,Xmin,Ymin,Zmin,Xmax,Ymax,Zmax,Dx, Dy,Dz

e9zR4mvMWw7_region20,ceiling 12.675,-6.351,5.082,11.645,-6.978,5.039,13.877,-5.597,5.110,2.232,1.381,0.070
e9zR4mvMWw7_region20,wall,12.736,-7.030,4.023,11.394,-7.117,2.761,13.965,-6.901,5.090,2.571,0.215,2.329
€9zR4mvMWw7_region20,wall,11.571,-6.061,3.909,11.433,-6.747,2.732,11.725,-5.442,5.064,0.292,1.305,2.332
e9zR4mvMWw7_region20,wall,13.975,-6.233,3.902,13.946,-6.920,2.755,13.989,-5.567,5.033,0.044,1.353,2.278
e9zR4mvMWw7_region20,wall,13.251,-5.570,3.767,11.477,-5.593,2.764,13.934,-5.534,5.037,2.457,0.059,2.273
e9zR4mvMWw7_region20,toilet,12.651,-6.783,3.214,12.497,-7.048,2.766,12.969,-6.354,3.596,0.471,0.694,0.830
€9zR4mvMWw7_region20,door,12.094,-5.515,3.917,11.667,-5.641,2.743,12.509,-5.405,4.811,0.842,0.236,2.068
e9zR4mvMWw7_region20,sink,11.852,-6.482,3.420,11.590,-7.036,3.033,11.998,-6.066,3.694,0.409,0.970,0.66 1
e9zR4mvMWw7_region20,window,12.269,-7.126,4.570,12.018,-7.182,4.294,12.591,-7.052,4.853,0.573,0.131,0.560

e9zR4mvMWw7_region20,mirror,11.610,-6.503,4.319,11.487,-7.052,3.869,11.656,-6.167,4.583,0.169,0.886,0.714

e9zR4mvMWw7_region20,plant,11.744,-6.895,3.721,11.694,-6.944,3.632,11.793,-6.823,3.794,0.099,0.121,0.163

e9zR4mvMWw7_region20,floor,12.722,-6.240,2.763,11.600,-7.052,2.734,13.981,-5.444,2.814,2.381,1.608,0.080

Figure 5: Scene information as an example.




A.2 Dataset details
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Figure 9: Answers of our model in the inference time with unaligned data.
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