

Deformation Generation via Autoregressive Models

Ran Ding

Barry Hu

Advised by: Jiapeng Tang

Supervised by: Prof. Matthias Nießner

April, 2023

Agenda

- Self Introduction
- Motivation
- Related Work
- Method
- Results
- Discussion
- Next Steps

Self-Intro

ТШ

Self-Intro

Ran Ding

- Bachelor of Computer Science, Dalian University of Technology, China
- Research Student, Visual Computing, TUM (2022 Now)

Barry Hu

- Bachelor of Computer Science, University of Waterloo, Ontario, Canada
- Reseach student, Visual Computing, 3D AI, TUM (2021 Now)

- NSDP uses a Transformer-based encoder to extract deformation, based on which the source points are transformed into the target points
- Can we generate these deformation?

- Transformer based Autoregressive model has been widely used for generative tasks
- Generate unknown deformation
 Using Autoregressive model
 Based on existing deformation.

Core Goal: Given partial deformation, aim to generate complete deformation.

Direct Application:

- 4D Completion and Generation
- Novel Deformation of Exiting Shapes
- Handle-based Shape Manipulation
- Text-based Deformation Editing
- Shape & Flow Completion

Related work

NSDP: encode deformation field

Related work

Yan, Xingguang, et al. "Shapeformer: Transformer-based shape completion via sparse representation." https://arxiv.org/abs/2201.10326

Related work

3DILG: Irregular Latent Grids for 3D Generative Modeling

Method

Overview

Deformation Quantization

Generate Deformation

Method: Overview

Method: Vector Quantized "Deformation"

Method: Vector Quantized "Deformation"

Method: AutoRegressive Model

Method: AutoRegressive Model

17

Results

Shape Completion

Shape Canonicalization

NSDP + VQ

Results: Shape Completion

Input: Arbitrary partial shape

Output: Arbitrary complete shape

Results: Shape Completion

Visual: arbitrary pose to canonical (pretrained NSDP)

Input: Source complete shape

Output: Canonical complete shape

Visual: arbitrary pose to canonical (pretrained NSDP)

Tang et al. 2022. Neural Shape Deformation Prior. In NeurIPS 2022 https://arxiv.org/pdf/2210.05616.pdf

Results: NSDP + Vector Quantization

Input: Canonical + Target Shape

Output: Reconstructed target shape

Results: NSDP + VQ

Reconstructed Meshes Reconstructed Pointclouds

Results: NSDP + VQ

Results: NSDP + VQ

	L2 x 0.001 (low)	CD x 0.01 (low)	FNC x 0.01 (high)
NSDP*	0.752	0.948	96.59
NSDP **	твр	твр	твр
NSDP + VQ **	0.783	1.048	92.06
3DCNN + VQ **	1.39	1.131	94.97

*Complete Shape + Partial Deformation as input, tested on unseen motion **Complete Shape + Complete Deformation as input, tested on unseen motion

Discussion

Vector Quantization

Autoregressive Model

- condition information
- number of transformer blocks
- geometry meaning of partial sequence

Next Steps

QnA

Thank you!