# **3D Stereo Reconstruction**

Advisor: Yuchen Rao, Andrei Burov, Angela Dai

Students: Barry (Shichen) Hu, Ran Ding, Jiongyan Zhang



ΠП



# Agenda

- Introduction
- Method
- Quantitative Evaluation
- Qualitative Evaluation
- Conclusion



## Introduction

• Goal for this project:



Left view

Right view

Pointcloud Reconstruction

• Dataset: Middlebury 2021 Mobile dataset

https://vision.middlebury.edu/stereo/data/



# Method

- Structure from Motion (SfM)
- Bundle Adjustment
- Multiview Stereo (MVS)



Target: Recover the extrinsic matrix and sparse points

#### How?

1. Keypoint extraction: SIFT, ORB, SURF



Figure 1: Keypoints (SURF)





Target: Recover the extrinsic matrix and sparse points

How?

2. Matching: Brute force or Flann



3. Filtering: Lowe's ratio test

Target: Recover the extrinsic matrix and sparse points

#### How?

- 4. Fundamental matrix:
  - 8 points algorithm
  - RANSAC algorithm 🗹
- 5. Recover Essential matrix
- 6. Recover R and T



Figure 4: Epipolar geometry, from https://en.wikipedia.org/wiki/Epipolar geometry



Target: Recover the extrinsic matrix and sparse points

#### How?

7. Triangulation





# Method - 2: Bundle Adjustment

- Optimising the reprojection error objective.
- Huber loss is used for its robustness.
- Levenberg-Marquardt
- Ceres (RMSE)



| Bundle Adjustment statistics                                      | (approximated RMSE): |  |
|-------------------------------------------------------------------|----------------------|--|
| #residuals: 19962<br>Initial RMSE: 2.36064<br>Final RMSE: 1.88907 |                      |  |
| Time (s): 31.7501                                                 |                      |  |



## Method - 3: Multiview Stereo

• **Image rectify:** project images onto a common image plane.





## Method - 3: Multiview Stereo

- StereoBM
- Semi Global Block Matching (SGBM)
- Depth map -> Point cloud



Depth Map

RGB Info

Point Cloud



### Method - 3: Multiview Stereo

The semi-global algorithm attempts to establish a global Markov energy equation by constraining the one-dimensional path in multiple directions on the image. The final matching cost of each pixel is the superposition of all path information:

$$L_r(p,d) = c(p,d) + \min egin{cases} L_r(p-r,d) \ L_r(p-r,d\pm 1) + P_1 \ \min_{i=d_{\min},\dots,d_{\max}} L_r(p-r,i) + P_2 \end{pmatrix} - \min_{i=d_{\min},\dots,d_{\max}} L_r(p-r,i)$$

The output is the depth map. We can use the projection matrix Q to obtain the 3D points.

The color information can be obtained from the original RGB image.





# **Quantitative Results**

• Keypoints detection

| Method | Avg number of detected points* |  |
|--------|--------------------------------|--|
| ORB    | 500                            |  |
| SIFT   | 3850                           |  |
| SURF   | 7708                           |  |

\*averaged over 24 scenes in Middlebury 2021 Mobile Dataset

https://vision.middlebury.edu/stereo/data/



# **Quantitative Results**

• Keypoints Matching

| Detection | Matching        | Outlier Ratio <sup>1</sup> | Avg processing time(s) |
|-----------|-----------------|----------------------------|------------------------|
| SIFT      | Flann (KDTree)  | 13.77                      | 0.634                  |
|           | BF <sup>2</sup> | 12.94                      | 0.608                  |
| ORB       | Flann (LSH)     | 17.64                      | 0.111                  |
|           | BF              | 14.39                      | 0.104                  |
| SURF      | Flann (KDTree)  | 21.46                      | 0.660                  |
|           | BF              | 20.23                      | 0.795                  |

<sup>1</sup>Outliers ratios calculated from the RANSAC algorithms. <sup>2</sup>Brutal Force



# **Quantitative Results**

• Disparity map generation

| Method   | Avg Bad2.0* score | Avg processing time(s) |
|----------|-------------------|------------------------|
| SGBM     | 46.633            | 0.941                  |
| StereoBM | 65.213            | 0.216                  |

\*Bad2.0: the percentage of the bad pixels with disparity error larger than 2 pixels

https://vision.middlebury.edu/stereo/data/



## **Qualitative Results**



#### https://vision.middlebury.edu/stereo/data/



#### **Qualitative Results**

ground truth ground truth point cloud point cloud point cloud point cloud skiboots1 artroom1 traproom1 curule1

https://vision.middlebury.edu/stereo/data/



#### **Qualitative Results - Artroom scene**





#### **Qualitative Results - Skiboots scene**



# ТШ

# Conclusion

- Experimented with different detection and matching methods. compare them:
  - Quantitatively
  - Qualitatively
- Reconstruction is bad in constant-intensity areas



# Any Questions?