3D Scanning & Spatial Learning RGB Self-supervised MVS Reconstruction

Di Chang Halil Eralp Koçaş Ran Ding

Technical University of Munich

Feb. 11, 2022

- Motivation & Contribution
- Introduction
- Background & Related Work
- Method
- Quantitative and Qualitative Result
- Discussion

Motivation

- Utilizing NeRF to enhance feature extraction and matching
- Occlusion-aware Method
- More than photometric consistency: Cross-View Rendering Consistency

Contribution

- Novel end-to-end learning-based Self-Supervised MVS Depth Inference
- Propose Render Consistency loss
- State-of the art accuracy on challenging DTU Dataset
- Strong generalization ability: SOTA on Tanks&Temples without finetuning

Problem Formulation:

Input:

- Multi-View Images of the same scene
 - 1 refence view and several source
- Corresponding camera parameters

Goal:

Reconstruct RGB Object using Depth Map and Point Clouds

Input & Output

• 128 different indoor scenes:

- 79 Training scenes
- 18 Validation scenes
- 31 Testing scenes

- Within each scene:
 - 49 RGB images from different views
 - Corresponding Camera Intrinsic and Extrinsic
 - A point cloud

Dataset for training and testing : DTU

RGB Image Scan23 View001

Ground Truth Depth Map Scan23 View001

view 3

Intermediate dataset:

- 8 outdoor scenes
- Includes: Family, Francis, Horse, Lighthouse, M60, Panther, Playground, Train

Advance dataset :

- 6 outdoor scenes
- Includes: Auditorium, Ballroom, Courtroom, Museum, Palace, Temple
- Training on DTU training set
- Tanks & Temples dataset is only for testing!

Advance dataset :

Panther

Train

Courtroom

Palace

Museum

- End-to-end Depth Map inference network.
- MVSNet:
 - 2D Conv Network to feature extraction
 - Differentiable Homography Warping to Cost Volume generation.
 - 3D Conv U-Net to regularize Cost
 Volume
 - Soft Argmax and 2D Conv Network to obtain refined Depth Map
- SOTA in DTU and Tanks and Temples dataset as of 2018.

Fig. 1: The network design of MVSNet.

- Neural rendering approach to reconstruct neural radiance fields for view synthesis.
- Generalizes well across scenes using only several multi-view input images.
- MVSNeRF:
 - 2D Conv Network to feature extraction
 - Differentiable Homography Warping to Cost Volume generation.
 - 3D Conv U-Net to obtain Neural Encoding Volume
 - MLPs and Ray Marching for Depth and RGB pixel rendering.
- Competitive results in DTU.

Figure 2. Overview of MVSNeRF.

- Self-supervised method.
- Addresses color constancy ambiguity using:
 - Prior semantic correspondence
 - Prior data augmentation consistency
- Depth Estimation Branch
 - MVSNet with Photometric Consistency Loss
- Data Augmentation Branch
 - Augmentation on reference view
 - MVSNet with Data Augmentation Consistency
- Co-Segmentation Branch
 - Localizes the foreground objects
 - Matrix Factorization to cluster the pixels
 - Semantic Consistency Loss between the reference and source view pixel labels

Figure 2: Illustration of the color constancy ambiguity problem in self-supervised MVS.

Figure 3: Illustration of our Joint Data-Augmentation and Co-Segmentation (JDACS) MVS framework.

CasNeuralMVSNet: Self-supervised MVS with Neural Rendering Group 2

Shared-weight eight-layer 2D CNN

Input shape: B x 3 x H x W Output shape: B x 32 x H x W

Source View Image: Depth + Camera + RGB -> World Point 2D -> 3D

Reference View Image: World Point + Camera -> RGB 3D -> 2D

$$\mathbf{H}_{i}(d) = \mathbf{K}_{i} \cdot \mathbf{R}_{i} \cdot \left(\mathbf{I} - \frac{(\mathbf{t}_{1} - \mathbf{t}_{i}) \cdot \mathbf{n}_{1}^{T}}{d}\right) \cdot \mathbf{R}_{1}^{T} \cdot \mathbf{K}_{1}^{T}.$$

All feature maps are warped into different front parallel planes of the reference camera to form feature volumes. Input shape: B x 32 x H x W. Output shape: B x 32 x 192 x H x W.

Variance Metric

$$\mathcal{M}(\mathbf{V}_1,\cdots,\mathbf{V}_N) = \frac{\sum_{i=1}^{N} (\mathbf{V}_i - \overline{\mathbf{V}_i})^2}{N}$$

 \mathcal{N}

Aggregate features from different views into one **cost volume**.

 $\mathbf{C} =$

Input shape: $B \times 32 \times 192 \times H \times W$. Output shape: $B \times 32 \times 192 \times H \times W$.

Classification to regression

- Classification: argmax along D dimension
- Regression: softmax along D dimension and calculate the weighted sum of depth values

Input shape: B x1x 192 x H x W Output shape: B x1x 1 x H x W

Loss: Photometric Consistency Loss

$$Total \ Loss \\ L = \sum \alpha L_{photo} + \beta L_{SSIM} + \gamma L_{Smooth}$$

 α = 0.8 , β = 0.2 and γ = 0.0067

CasNeuralMVSNet: Self-supervised MVS with Neural Rendering Group 2 NF

Neural Rendering

Quantitative Results

• Point cloud evaluation results on DTU

- The lower is better for Accuracy (Acc.), Completeness (Comp.), and Overall

	Method	Acc.↓	Comp.↓	Overall.↓	
	Camp [3]	0.835	0.554	0.695	
Sup. and Geo.	Furu [8]	0.613	0.941	0.777	
	Tola [22]	0.342	1.190	0.766	
	Gipuma [9]	0.283	0.873	0.578	
	SurfaceNet [12]	0.450	1.04	0.745	
	MVSNet [29]	0.396	0.527	0.462	
	R-MVSNet [30]	0.383	0.452	0.417	
	CIDER [27]	0.417	0.437	0.427	
	Point-MVSNet [5]	0.342	0.411	0.376	
	GBi-Net [18]	0.315	0.262	0.289	
Semi-Sup.	U-MVSNet [26]	0.354	0.3535	0.3537	
	Unsup_MVSNet [13]	0.881	1.073	0.977	
UnSup.	MVS2 [7]	0.76	0.515	0.637	
	M3VSNet [11]	0.636	0.531	0.583	
	JDACS [25]	0.398	0.318	0.358	
	Ours	0.4209	0.2927	0.3568	

Quantitative Results

- Point cloud evaluation results on the Advanced and Intermediate subsets of Tanks and Temples dataset
 - Higher scores are better. The Mean is the average score of all scenes

	Advanced						Intermediate									
Method	Mean	Aud.	Bal.	Cou.	Mus.	Pal.	Tem.	Mean	Fam.	Fra.	Hor.	Lig.	M60	Pan.	Pla.	Tra.
MVSNet [29]	-	-	-	-	-	-	-	43.48	55.99	28.55	25.07	50.79	53.96	50.86	47.90	34.69
Point-MVSNet [5]	-	-	-	-	-	-	-	48.27	61.79	41.15	34.20	50.79	51.97	50.85	52.38	43.06
UCSNet [6]	-	-	-	-	-	-	-	54.83	76.09	53.16	43.03	54.00	55.60	51.49	57.38	47.89
CasMVSNet [10]	31.12	19.81	38.46	29.10	43.87	27.36	28.11	56.42	76.36	58.45	46.20	55.53	56.11	54.02	58.17	46.56
PatchmatchNet [23]	32.31	23.69	37.73	30.04	41.80	28.31	32.29	53.15	66.99	52.64	43.24	54.87	52.87	49.54	54.21	50.81
GBi-Net [18]	37.32	29.77	42.12	36.30	47.69	31.11	36.93	61.42	79.77	67.69	51.81	61.25	60.37	55.87	60.67	53.89
U-MVSNet [26]	30.97	22.79	35.39	28.90	36.70	28.77	33.25	57.15	76.49	60.04	49.20	55.52	55.33	51.22	56.77	52.63
MVS2 [7]	-	-	-	-	-	-	-	37.21	47.74	21.55	19.50	44.54	44.86	46.32	43.38	29.72
M3VSNet [11]	-	-	-	-	-	-	-	37.67	47.74	24.38	18.74	44.42	43.45	44.95	47.39	30.31
JDACS [25]	-	-	-	-	-	-	-	45.48	66.62	38.25	36.11	46.12	46.66	45.25	47.69	37.16
Ours	29.46	20.87	34.3	27.46	36.55	26.78	30.81	53.61	73.53	50.3	44.89	52.66	52.18	49.76	54.55	51

Qualitative Results

Qualitative Results

Qualitative Results

Pros: Perfect Accuracy and Generalization Ability

Cons: Memory cost and test time efficiency

Possible Solution for future works:

- Introduce efficient design for 3D U-Net e.g. Binary Search
- Introduce coarse-to-fine structure for MLPs

Cost Volume Regularization

Zhenxing Mi^{*}, Di Chang^{*} and Dan Xu. Generalized Binary Search Network for Highly-Efficient Multi-View Stereo. Under review at CVPR 2022. https://arxiv.org/abs/2112.02338