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Motivation and Contribution

Motivation

« Utilizing NeRF to enhance feature extraction and matching

* QOcclusion-aware Method

« More than photometric consistency: Cross-View Rendering Consistency

Contribution
* Novel end-to-end learning-based Self-Supervised MVS Depth Inference
* Propose Render Consistency loss

« State-of the art accuracy on challenging DTU Dataset
« Strong generalization ability: SOTA on Tanks&Temples without finetuning
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Introduction to the task: RGB Object Reconstruction 4

Problem Formulation:

Input:
Multi-View Images of the same scene
- 1 refence view and several source
Corresponding camera parameters

Goal:
Reconstruct RGB Object using Depth Map and Point Clouds
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Input & Output >

MVS Model
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Dataset for training and testing : DTU

o 128 different indoor scenes:
— 79 Training scenes
— 18 Validation scenes
— 31 Testing scenes

e Within each scene:
— 49 RGB images from different views
— Corresponding Camera Intrinsic and Extrinsic
— A point cloud
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Dataset for training and testing : DTU 7

- RGB Image Scan23 View001

- Ground Truth Depth Map Scan23 View001
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Dataset for training and testing : DTU

Predicted depth map Scan23 - Ground Truth Point Cloud Scan23

view 2 _
Fusion
b\ Camera
- parameters
view 3
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Dataset for testing : Tanks & Temples

Intermediate dataset:

- 8 outdoor scenes
- Includes: Family, Francis, Horse, Lighthouse, M60, Panther, Playground, Train

Advance dataset :

- 6 outdoor scenes
 Includes: Auditorium, Ballroom, Courtroom, Museum, Palace, Temple

* Training on DTU training set
 Tanks & Temples dataset is only for testing!

CasNeuralMVSNet: Self-supervised MVS with Neural Rendering m

Group 2



Dataset for testing : Tanks & Temples 10

Intermedia dataset:

Family Panther Train

Advance dataset 3

R

Courtroom Palace
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Related Work: MVSNet 11

7 A =
e End-to-end Depth Map inference network. g \ ' ” m! e Comenion '
Ti 5 I Seavweigs 1o
e MVSNet: S — o
o 2D Conv Network to feature extraction 6 ‘ ” ” | *.v ‘
Differentiable Homography Warping to ] Shared Weights Iial Depth Map
Cost Volume generation. 1 4 oy
o 3D Conv U-Net to regularize Cost ;’f \% ml Il - ‘ Ve ?’l”l—<
Volume = |
o Soft Argmax and 2D Conv Network to Feature Differentiable Cost Volume Depth Map

Extraction Homography Regularization Refinement

obtain refined Depth Ma
P P Fig.1: The network design of MVSNet.

e SOTA in DTU and Tanks and Temples
dataset as of 2018.
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Related Work: MVSNeRF 12

e Neural rendering approach to reconstruct 3D Conv 7 :
neural radiance fields for view synthesis. ' 0l % (EB_"&)‘J\/ [ ] source views
e Generalizes well across scenes using only H’ D — . | Terget view
several multi-view input images. p l | Noc posiin
& ‘ LS i
e MVSNeRF: Render Loss | ¢ :mage color
2D Conv Network to feature extraction | 2 iy
o Differentiable Homography Warping to a) Cost Volume b) Neural Encoding Volume c) Volume Renderer
Cost Volume generation. Figure 2. Overview of MVSNeRF.

o 3D Conv U-Net to obtain Neural
Encoding Volume

o MLPs and Ray Marching for Depth and
RGB pixel rendering.

e Competitive results in DTU.
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Related Work: JDACS
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Self-supervised method.

Addresses color constancy ambiguity using:
o Prior semantic correspondence
o Prior data augmentation consistency

e Depth Estimation Branch

o MVSNet with Photometric Consistency Loss
e Data Augmentation Branch

o Augmentation on reference view

o MVSNet with Data Augmentation Consistency
e Co-Segmentation Branch

o Localizes the foreground objects

o Matrix Factorization to cluster the pixels

o Semantic Consistency Loss between the

reference and source view pixel labels

(a) Limitation of Current Self Supervised MVS (b) Examples in Realistic Situations

Assume ¢ Ambiguous ¢ Neglect
I Color Constancy Hypothesis i Supervision )l Realistic Situation
' Correspondence Same Color ' (‘orrespondence 75 Same Color
|

Figure 2: Illustration of the color constancy ambiguity problem in self-supervised MVS.

Ref View Src Views Pretrained VGG Non-negative Matrix Factorization
A >

Ref View _ Src Views !
™ K 4 VA Cross-view
Flatten [o]& =) o o ol E Semantic
|:| > = P —> ] 2 > Consistency
Reshape ' H
L | | A | : (Sec. 3.2)
Co-! chmentatlon Branch (NHW x C) (NHW x K) Co-Segmentation Map
Ref View Src Views §hfrfd Weights
& > - —
| » Photometric
H H > feccs - — — —) —>» Consistency
- (Sec. 3.1)
D cpth .Esumatl EREanch Feature Extraction Differentiable Homography (Cost Volume 3D Regularization Depth Map \ L
Shared Weights 7
A 00N - o Data-
L | H H[l |:| H —_— *${» —_ e — — Augmentation
=~ § Consistency
Random Transform | | (Sec. 3.3)
Data Augmentation Branch Feature Extraction  Differentiable Homography Cost Volume 3D Regularization Contrastive Depth Map Nines

Figure 3: Illustration of our Joint Data-Augmentation and Co-Segmentation (JDACS) MVS framework.
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Pipeline: CasNeural-MVSNet 14

Self-supervised CasMVSNet
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Pipeline: CasNeural-MVSNet 15
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Feature Extraction 16
Shared-weight eight-layer 2D CNN
Input shape: Bx3 xHxW
Output shape: Bx 32 xHx W
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Pipeline: CasNeural-MVSNet 17

Self-supervised CasMVSNet

4
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Differentiable Homography Warping

18

Source View Image: Depth + Camera + RGB -> World Point

Reference View Image: World Point + Camera -> RGB

2D -> 3D

3D ->2D
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Differentiable Homography Warping 19

(t1 —t;) -nf
d

H;(d) =K; R, - (I - ) RT . K7,

All feature maps are warped into different front parallel planes of the
reference camera to form feature volumes.

Input shape: B x 32 x Hx W.

Output shape: B x 32 x 192 x H x W.

(a) target img (b) source img (c) warp img
X
C g
Warping
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20

Feature aggregation

N
Z: (Vi —V;)?

Variance Metric C=M(Vy, -, Vy) =
L N
Aggregate features from different views into one cost volume.

Input shape: Bx32x 192 xH x W.
Output shape: B x 32 x 192 x H x W. N

H

Cost
== \/olume

=
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Pipeline: CasNeural-MVSNet 21

Self-supervised CasMVSNet
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Argmax and softmax 22

Classification to regression

Classification: argmax along D dimension

Regression: softmax along D dimension and calculate the weighted sum of depth values

d max ! !
D == E d X P (d) Select window in Project into neighbouring image
reference image along epipolar line

Input shape: B x1x 192 x Hx W
Output shape: B x1x 1 xHx W

Locate matching window using
maximum NCC score

. pel ™ : \
NCC Score ad! T Y TN A \
J \ A YA ‘f\’[ \ A f \_/ \ \
= V | \,V/ X
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Pipeline: CasNeural-MVSNet 23

Self-supervised CasMVSNet
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Loss: Photometric Consistency Loss

24
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Pipeline: CasNeural-MVSNet 25

Self-supervised CasMVSNet
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Neural Rendering

26
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27
Quantitative Results

- Point cloud evaluation results on DTU
— The lower is better for Accuracy (Acc.), Completeness (Comp.), and Overall

Method Acc.] Comp.| Overall.]
Camp [ ] 0.835 0.554 0.695
Furu [] 0.613 0.941 0.777
Tola [ ] 0.342 1.190 0.766
Gipuma ["'] 0.283 0.873 0.578
Sup. and Geo. SurfaceNet [ ] 0.450 1.04 0.745
MVSNet [7] 0.396 0.527 0.462
R-MVSNet [ ] 0.383 0.452 0.417
CIDER [~ ] 0.417 0.437 0.427
Point-MVSNet [ ] 0.342 0.411 0.376
GBi-Net [ 7] 0.315 0.262 0.289
Semi-Sup. U-MVSNet [ 7] 0.354  0.3535 0.3537
Unsup MVSNet[' '] 0.881 1.073 0.977
MVS2 [ /] 0.76 0.515 0.637
UnSup. M3VSNet [ ] 0.636 0.531 0.583
JDACS [ 7] 0.398 0.318 0.358
Ours 0.4209 0.2927 0.3568
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28
Quantitative Results

- Point cloud evaluation results on the Advanced and Intermediate subsets of Tanks
and Temples dataset
— Higher scores are better. The Mean is the average score of all scenes

Advanced ‘ Intermediate
Method Mean Aud. Bal. Cou. Mus. Pal. Tem. ‘ Mean Fam. Fra. Hor. Lig. M60 Pan. Pla. Tra.
MVSNet [ "] - - - - - - - 4348 5599 28.55 2507 5079 5396 50.86 4790 34.69
Point-MVSNet [ ] - - - - - - - 4827 61.79 41.15 3420 50.79 5197 50.85 5238 43.06
UCSNet [] - - - - - - - 5483 76.09 53.16 43.03 54.00 5560 5149 57.38 47.89

CasMVSNet [ '] 31.12 19.81 38.46 29.10 4387 27.36 28.11 | 5642 7636 5845 46.20 5553 56.11 54.02 58.17 46.56
PatchmatchNet [ °] 32.31 23.69 37.73 30.04 41.80 2831 3229 | 53.15 66.99 52.64 4324 5487 52.87 49.54 5421 50.81

GBi-Net [ 7] 3732 29.77 4212 3630 47.69 31.11 3693 | 6142 79.77 67.69 5181 61.25 60.37 5587 60.67 53.89
U-MVSNet [ 7] 3097 22779 3539 2890 36.70 28.77 33.25 ] 57.15 7649 60.04 4920 5552 5533 5122 56.77 52.63
MVS2[7] - - - - - - - 3721 47774 2155 1950 4454 4486 4632 4338 29.72
M3VSNet [ 1] - - - - - - - 37.67 47774 2438 18774 4442 4345 4495 4739 30.31
JDACS [ 7] - - - - - - - 4548 66.62 38.25 36.11 46.12 46.66 4525 47.69 37.16
Ours 29.46 2087 343 2746 36.55 26.78 30.81 ] 53.61 7353 503 4489 5266 52.18 4976 54.55 21
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Qualitative Results
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Qualitative Results
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Qualitative Results
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Discussion: Pros and Cons

32

Pros: Perfect Accuracy and Generalization Ability

Cons: Memory cost and test time efficiency

Possible Solution for future works:
» Introduce efficient design for 3D U-Net e.g. Binary Search
* |ntroduce coarse-to-fine structure for MLPs

Zhenxing Mi* , Di Chang* and Dan Xu. Generalized Binary Search Network for Highly-Efficient Multi-View Stereo.
Under review at CVPR 2022. https://arxiv.org/abs/2112.02338

Cost Volume
Regularization
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